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Abstract
The objective of this thesis is to explore a switching-based approach to estimate the state

of charge (SOC) of Li-ion batteries. The knowledge of SOC can be utilized to significantly

enhance battery performance and longevity. The thesis first presents a brief discussion

on various SOC estimation methods, such as coulomb counting, use of electrochemical

model combined with Kalman Filtering and open-circuit voltage (OCV). Subsequently,

emphasis is placed on the OCV-based method. The advantage of the OCV method lies in

its simplicity. It obviates the need for modeling and lowers computational burden compared

to model-based approaches. The method yields accurate SOC estimates if a long period of

battery resting time (switch-off time) is allowed. For smaller switch-off durations, the

accuracy of SOC estimation reduces. However, experiments show that Li-ion batteries

could give acceptable SOC estimates due to their fast transient response during switch-

off. In traditional usage scenarios, a switch-off interval may not be practical. However,

in distributed power systems with multiple storage elements, a switch-off interval could be

provided. Experiments are conducted to characterize the estimation error versus the switch-

off time. To reduce the switch-off time to 30 second switch-off time and to increase the

accuracy of SOC estimation, a method is proposed to extrapolate the OCV at infinite time

from the measured OCV using a time constant. This leads to a predicted OCV for infinite

switch-off intervals. Experiments are conducted to confirm the improved SOC estimation

using the proposed method. For experimentation, a commercially available LiFeMgPO4

battery module as well as a single cell LiFePO4 battery, is used.
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Chapter 1

Introduction

1.1 Motivation

As the rate of technological advancement has increased in recent decades, the demand for

energy has grown rapidly. However, many energy resources such as coal and petroleum are

harmful to the environment and have limited supply. Alternative energy resources that are

more environmentally friendly than petroleum and coals, such as fuel cells, wind turbines,

solar cells, etc. have been an active field of research. For optimal performance, alternate

energy resources are typically hybridized with energy storage devices. Hence, the ability

to effectively manage generation and storage of energy becomes a necessary task to ac-

complish. One of the most common energy storage devices is the rechargeable battery.

In order to extend the lifetime of a battery, enhance performance, and improve reliability,

an accurate state of charge (SOC) determination method is required. An example of SOC

estimation application is in electric vehicle. Having the knowledge of the battery’s SOC

can efficiently run the electric motor by charging the battery above certain valid limits.

Over the years of battery technology development, various SOC determination methods

have been developed. A summary of techniques for SOC determination is listed in [10].

Authors of [11] also present an extensive review of battery SOC estimation techniques.

They list methods such as open- circuit voltage (OCV) measurement, electromotive force

(EMF) method, book-keeping systems and adaptive systems. [11] presents the advantages

and drawbacks of different methods that can be applied to different types of batteries such

1
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as lead acid, nickel metal hydride and lithium ion batteries.

Currently, the most promising type of battery for future energy storage applications is

the Li-ion battery [12]. It has many applications; however, the biggest drawback of Li-ion

batteries is the safety issue. Lithium ion batteries are not as reliable as nickel metal hydride,

nickel-cadmium or lead acid due to their poor heat dissipation property [13]. Without the

ability to monitor SOC, overcharging or overdischarging the battery can occur. If the bat-

tery is overcharged, thermal runaway and a potential fire hazard can occur. In some extreme

cases, if the battery is overheated and overcharged, the battery can explode. If the battery is

overdischarged, an irreversible new chemical reaction can occur in the battery, resulting in

new compounds in the battery. This either leads to reduction of battery capacity or makes

the battery system non-operational [14]. Therefore, for safety and battery protection, the

ability to monitor the state of charge of batteries, especially lithium-ion batteries, becomes

critical. To make use of the lithium-ion battery system in an energy system, combined SOC

estimation and energy system management present a challenging task.

1.2 Literature Review

In the field of battery management, SOC estimation is an ongoing field of research. There

are several techniques used for SOC determination in various applications. Examples of

SOC estimation techniques include: coulomb counting method, utilizing battery electrical

properties (capacitance, impedance, electromotive force (EMF)) and open-circuit voltage

(OCV) [11].

The traditional simple coulomb counting method is an open-loop SOC estimator. It

utilizes the knowledge of the charging or discharging current and by integrating the current

over time, estimates the coulomb count. The SOC is estimated by subtracting the total

charge flow from the initial 100% available charge. It can be accurate and cost effective if

the proper battery model is applied [15].

The coulomb counting method often depends on the current flowing from the battery to

2
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external circuits; therefore, the accuracy of this method depends on the pre-existing knowl-

edge of the external circuitry and battery parameters such as the amount of charge in a

fully charged cell. Substantial error can accumulate if the system does not account for self-

discharge current or the Columbic efficiency of the battery. In addition, the simple coulomb

counting method does not consider the aging effect of the battery [15]. Modifications have

been proposed to improve the accuracy of the coulomb counting method. In [16], Ng et.al

propose a coulomb counting method for estimating SOC by utilizing the charging and dis-

charging rate of the battery. In [17], an optimized support vector machine SOC estimator is

created by utilizing a traditional coulomb counting estimation method and real-time pattern

recognition technique. The authors have demonstrated an accurate result but it requires a

period of training time for the SOC estimator to be accurate. In [18], the authors report the

development of mathematical models that describe the EMF, overpotential functions and

SOC by utilizing a simple coulomb counting method. They use the open-circuit voltage

measurement and current measurement with their battery model to create a battery SOC

indication system. They have discovered that it is more accurate to use the open-circuit

voltage method, but the method does not provide continuous indication of the SOC since

the battery needs to rest for some period of time.

Another SOC estimation method is one that uses the equivalent circuit model of the

battery. The model uses electrical properties such as impedance, capacitance and EMF of

the battery. By fitting parameters to test data, circuit parameter values can be determined

[19, 20]. An equivalent circuit model captures the transient characteristics of a battery. Fur-

thermore, by gaining an understanding of the parameter variations, one can also estimate

the state of health of the battery [21]. The equivalent-circuit-based SOC estimation method

is commonly implemented in battery management systems [5, 16, 22, 23]. An example of

utilizing the equivalent circuit model for SOC estimation is shown in [23]. Here, the au-

thors adopted a battery equivalent circuit model in conjunction with a pattern recognition

algorithm to estimate SOC.

Similarly, battery electrical properties are also used to develop analytical models that

3
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relate current, voltage and SOC. In [24], such an analytical modeling approach is developed

for SOC determination. The authors additionally take the temperature and the cycle aging

effects into consideration in their model. Battery electrical properties have also been used

to develop analytical models relating EMF, battery internal resistance and SOC [22, 25,

26]. In [25], a dynamic analytical battery model is developed using the knowledge of

EMF and internal resistance. The authors use a microprocessor to store lookup tables of

voltages, currents, and temperature factors for an accurate online SOC estimation based

on measurements. The work in [22] focuses on combining EMF and coulomb counting

methods for a faster and more accurate result. Similar to the work done in [25], the authors

in [22] incorporate impedance, load current and terminal voltage to estimate SOC. Another

example utilizing battery parameters for SOC estimation is in using the impedance of the

battery to estimate the SOC, as done in [26]. It is noted that since the impedance parameter

varies from battery to battery, this method can only be used for a given battery with known

parameter values obtained through test data. In [27], the dynamic behavior of batteries such

as impedance variation and frequency response during operation are analyzed to determine

SOC.

The common drawback of using electrical properties to estimate SOC is that a spe-

cific type of battery chemistry is assumed. The electrical characteristic such as battery

impedance and capacitance changes as the operating conditions change. The battery char-

acteristic does not stay the same over time even with the same type of chemistry. The

variation is greater if the battery chemistry or operational temperature changes.

Another approach to SOC estimation is using the electrochemical model of the battery.

In this regard, the Li-ion chemistry has been considered in a number of papers [4, 28–

32]. The electrochemical model is more accurate than the equivalent circuit model since

the electrochemical model takes into account different lithium ion battery chemistries and

temperature effects. The advantage of this method is the accuracy of the SOC estima-

tion in real time. However, the method could be computationally intensive. A number of

4
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researchers have reported techniques to increase the speed of the simulation for the elec-

trochemical model in order to apply the model in practice. Two reduced-order lithium ion

battery models are introduced in [33]. They demonstrate an accurate model for SOC esti-

mation without a lengthy computational time. This model allows real-time implementation

in practice with some sacrifice in accuracy.

Many research groups have investigated the approach of using the open-circuit voltage

(OCV) of a battery to estimate SOC. The OCV method is widely implemented in SOC

estimation algorithms. The basic principle of the OCV method relies on the thermody-

namic equilibrium of lithium ion cells. As the lithium ion cell reaches its thermodynamic

equilibrium, the lithium chemical potential (ionic and electronic) difference between the

anode and the cathode is commonly known as the open-circuit voltage (OCV). The OCV

is a function of chemical composition, pressure and temperature as presented in [34]. It is

an electrical representation of the batteries’ chemical reaction.

Authors of [35] have conducted extensive testing to obtain OCV versus SOC behav-

iors of lead-acid batteries. They assume a constant operational temperature of 25◦C. All

batteries are fully charged before the discharging tests. The error is less than 3% after a

two-minute open-circuit interval for the discharge test. For the charging state, the error

is less than 5% after a ten-minute open-circuit interval. The authors show that it takes a

period of time to estimate SOC accurately using OCV measurement. In [36], the authors

utilize a modified OCV-SOC relationship based on conventional OCV-SOC to estimate

SOC of lithium-ion batteries. The authors acknowledge that the traditional open-circuit

voltage method is accurate, but needs a rest time to estimate the SOC. They use an ex-

tended Kalman filter with optimum adaptive algorithm to minimize the SOC estimation

error based on the OCV vs. SOC curve. An equation relating OCV with the terminal volt-

age of the battery is presented in [11]. The authors reviewed the work of many groups that

have utilized SOC-OCV relationship, such as [37]. Research groups often used the OCV

estimation method instead of direct measurement to avoid switching off the battery from

5



www.manaraa.com

the system. Equation (1.1) is commonly used for SOC estimation, where Vterm is the bat-

tery terminal voltage, and is directly measurable. The approach uses the terminal voltage

to determine the OCV and subsequently uses a map between OCV and SOC to estimate the

SOC. In [38], the authors utilize Equation (1.1) for OCV estimation without switching off

the battery. The accuracy of using the OCV estimation can vary depending on the current

SOC of a battery. In addition, Equation (1.1) does not take into consideration the hystere-

sis that occurs in lithium ion batteries [1, 9]. Research groups have investigated various

modifications of the OCV estimation technique.

OCV = Vterm + IR (1.1)

Examples of OCV estimation technique can be found in the following papers: in [39],

an algorithm is developed for SOC estimation that incorporates EMF and current to esti-

mate OCV. Furthermore, in [40], the authors demonstrate that the OCV can provide a basis

for SOC measurement and utilized the OCV vs. SOC property to perform cell equalization

of the battery. In [41] and [42], an equivalent circuit model is used for OCV estimation.

Using the SOC vs. OCV relationship curve, the SOC of the battery is estimated. A sliding

mode observer is designed in [42] for estimating the electrical properties and OCV of the

battery. In [43] also, an equivalent circuit model is utilized for OCV estimation. In this pa-

per, the authors propose to use a time constant to estimate OCV and apply it to a dynamic

model of the EKF algorithm using a Kalman filter. In [44] and [45], the authors model

the battery to account for temperature and thermal effects. They estimate the open-circuit

voltage to find SOC. Their model is less accurate at low temperatures and at high discharge

rates. With the knowledge of temperature effects, authors in [46] investigated temperature

effects on battery parameters such as OCV, resistance and capacitance. By incorporating

an Extended Kalman filter (EKF) algorithm into their battery data, they have designed an

accurate SOC estimation under temperature variation.

The open-circuit voltage SOC estimation technique has been well established by vari-

ous research groups because of many advantages of this method. One advantage, such as

6
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the result shown in [47], shows that the OCV versus SOC curve is independent of the age

of the Li-ion battery. The OCV method can be very accurate if a rest time of the battery

is allowed [36][48]. The relationship of OCV versus SOC curve exists, even though the

curve differs among batteries. As long as an initial characterization is done through simple

experiments, one can use the OCV to determine SOC without complicated model develop-

ment tasks. Avoiding complex battery modeling lets this method have wider applications.

One scenario where the OCV method can be applied is hybrid energy applications. Such an

example involving distributed energy generation is shown in [49] which utilizes batteries to

match the load demand whether there is a surplus or a shortage in energy generated. Here

the OCV method could be applicable if the system has multiple energy storage elements.

The major drawback of the OCV-based SOC estimation method is that it requires the bat-

tery to be switched off from the circuit for a period of time. Unless the system can allow

a parallel battery configuration or allow the battery to be disconnected from the system

for a duration, this method would not be suitable without intensive modeling. The other

drawback is that the OCV vs. SOC curve varies if the operating temperature changes [50].

Therefore, if the system is subject to large temperature variations, this approach may not

be suitable without modification.

In this research, the study investigates the OCV-based SOC estimation approach de-

scribed above, in conjunction with switching, for lithium ion batteries. The main focus of

this study is on lithium ion batteries because they have higher energy storage capability

compared to other existing battery technologies [1].

1.3 Basic Operating Principle of Lithium-Ion Battery

The basic elements of batteries are anode, cathode and electrolyte. As a lithium ion battery

is charged or discharged, a lithium exchange occurs between anode and cathode owing

to ion transport within the electrolyte of the battery. The number of factors of the battery

relates to the thermodynamic parameters of the battery such as lithium stoichiometry, which
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relates to the state of charge. The basic discharge reaction of a Li-ion battery is shown in

Equation (1.2) where CA and AN are the working electrodes [34].

LixAN + CA
discharge−−−−−→ AN + LixCA (1.2)

Fig. 1.1 illustrates the basic operating principle of lithium-ion batteries [1]. For safety

reasons, the common commercially available rechargeable Li-ion battery is in its ionic,

rather than metallic state. The energy level of the lithium-ion battery varies as the positive

and negative electrode materials change. The use of different lithium-ion cathode materials

such as FePO4 and structures such as carbon nano-tubes provides ongoing research for the

public and private sectors.

Figure 1.1: Rechargeable Lithium-Ion Battery During Discharge [1]

Lithium ion batteries have many advantages over other types of chemistry such as

Nickel-metal hydride or lead acid batteries. Higher energy density, lighter weight, longer

cycle life and no memory effect make lithium ion batteries very popular in battery tech-

nology advancement among research groups. Lithium ion batteries weigh on average one-

third the weight of lead acid and 65% the weight of nickel-metal hydride batteries. This
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Figure 1.2: Comparison of Battery Technologies in Terms of Volumetric and Gravimetric
Energy Density [1]

reveals important reasons why lithium-ion batteries are very attractive in hybrid vehicle ap-

plications. Many research groups have investigated different designs and combinations of

lithium-ion battery chemistries and various applications utilizing this battery technology.

Fig. 1.2 illustrates the energy density comparison between different battery technologies

[1].

Researchers have investigated different types of lithium-ion battery cathode chemistry.

Lithium manganese oxide (LMO), lithium titanium oxide (LTO), lithium nickel manganese

oxide (LiNiMO), lithium cobalt oxide (LiCoO2) and lithium phosphate are several exam-

ples of lithium-ion battery cathode compounds [34]. The voltage and capacity profile varies

and depends on the battery’s chemical structure. Extensive review of various lithium ion

rechargeable batteries can be found in [34].

The specific batteries this thesis investigates are the lithium iron magnesium phosphate

(LiFeMgPO4) battery manufactured by Valence Technology and lithium iron phosphate
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(LiFePO4) manufactured by A123 Systems. The LiFeMgPO4 battery is a battery mod-

ule with four 3.3V cells. This type of battery tends to have a slower electrolyte reaction

which reduces the chance of thermal runaway. In addition, the cost of this material is

less compared to a compound such as LiNi0.33Co0.33Mn0.33O2 which has a higher capacity.

However, these chemical resources are more limited than phosphate [12]. The LiFePO4

battery is a common commercially available single cell 3.3V battery. The benefit of this

type of chemistry is that phosphate-based materials are cost effective and more reliable.

Further details on the experimental characterization of these batteries will be discussed in

the later chapters.

1.4 Objective

The objective of this thesis is, first, to survey the state-of-the-art in battery state-of-charge

estimation methods, as done in the literature review presented earlier in this chapter. Fur-

ther, a switching-based approach to estimate the SOC of Li-ion batteries is proposed. This

method relies solely on the voltage characteristic of Li-ion batteries and uses a switch-off

duration for direct measurement of OCV. The thesis carries out hardware experiments to

verify the validity and effectiveness of the direct OCV-based SOC estimation method using

two different batteries: LiFePO4 and LiFeMgPO4. The thesis further investigates the SOC

estimation error incurred using the proposed method. The thesis is organized as follows:

A detailed lithium ion battery system description is provided in Section 2.1. Sections 2.2

and 2.3 present two common SOC estimation methods. Chapter 3 and Chapter 4 elucidate

battery experimental testing results. Section 3.1 describes the hardware set-up of the ex-

periment and Section 3.2 compares the voltage response between lead acid batteries and

Li-ion batteries. Chapter 4 shows the charge and discharge test results of two types of

batteries. It describes the SOC estimation approach for direct measurement of the OCV.

Chapter 5 proposes improved SOC estimation by utilizing a characteristic time constant

reflective of the battery’s transient response. Battery time constant variation versus aging
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is briefly introduced in Section 5.3. Chapter 6 comprises concluding remarks and future

work. Additional information is provided in the appendix.
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Chapter 2

Lithium-Ion Battery System

2.1 Basic Properties of Lithium-Ion Battery Monitoring

System

Lithium-ion battery is a general term that refers to a family of batteries in which the anode

chemistry is lithium-based. Different types of Li-ion batteries are distinguished by their

cathode chemistry, such as oxide or phosphate. As briefly mentioned in the earlier chapter,

various cathode materials have different properties. This thesis will focus on LiFePO4

and LiFeMgPO4 cathode materials to understand the general properties of the common

commercially available batteries.

2.1.1 Lithium Iron Phosphate LiFePO4

The lithium iron phosphate batteries cathode materials have been very popular for com-

mercial use, high power applications and military applications. These types of cathode

materials have lower cost compared to other types of cathode materials. In addition, these

materials are less toxic than Co, Ni, and Mn-based cathode materials [2]. Compared to only

Fe-based cathode materials, which have poor ability for lithium removal, FePO4 material

has shown much better battery performance. A comparison of different iron-based cathode

materials is shown in Fig. 2.1 [2].

The typical chemical reaction of LiFePO4 is shown in Equation (2.1) and illustrated in
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Figure 2.1: Energy Diagram of Some Iron-based Cathode Materials for Lithium ion Bat-
teries [2]

Fig. 2.2 [3].

LiFePO4 <=> FePO4 + Li + e− (2.1)

The LiFePO4 chemistry has no obvious capacity reduction with several hundred cycles and

it has higher stability during charging and discharging [51]. Advantages such as being non-

toxic, having thermal and chemical stability and longer cycle life make the iron phosphate

a popular battery material in research and applications [2] [52]. One of the disadvantages

of this material is that without overdischarge protection, it is easy to damage the cell and

diminish its capacity [51]. Therefore, SOC monitoring of this type of cell is critical.

2.1.2 Battery Management System

In order for applications to properly use the battery in their system, a battery monitoring

system is a necessity. A battery monitoring system generally includes a means for moni-

toring the state of charge (SOC) and the state of health (SOH) of the battery. This is for
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Figure 2.2: Chemical Reaction of LiFePO4 [3]

safety and for application-specific needs. SOC and SOH are critical properties in battery

technology and they have been extensively investigated by researchers.

SOC is often defined as the available capacity expressed as a percentage of the current

maximum capacity of the cell as shown in Eq.(2.2).

SOC = (
Qavailable

Qrated

)× 100% (2.2)

SOH refers to the condition of the battery. It is a common metric for comparing the battery’s

condition to the battery’s performance specifications. SOH typically relates to the age of

the battery; SOH generally decreases over time and with use. Equation (2.3) shows the

SOH definition. The rated capacity is the battery’s capacity when the battery is fresh. The

battery total capacity fades over time. It is often recommended to replace the battery if the

SOH is below 80%.

SOH = (
Capacitycurrent

Capacityrated

)× 100% (2.3)

If the SOH is not known, even if the battery is fully charged, it might, for example, only

have the effective capacity of 60% of a new cell by comparison. Therefore, SOC, also

known as battery’s charge content, only indicates the remaining energy in the cell; it does

not necessarily indicate the battery’s ability to meet the load performance requirement.

However, knowing the battery’s SOC can prevent overcharging or over-discharging the
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battery. SOC indication is often used to prolong battery life, assist battery performance and

prevent hazards.

In a battery monitoring system, SOH and SOC are often monitored at the same time

by using a different estimation technique. The common properties that are used for SOH

and SOC are impedance, capacitance, voltage, self-discharge rate and ability to accept a

charge. This thesis is mainly focused on SOC estimation of the battery and it is assumed

for a control application, the SOH is at the healthy level.

The knowledge of battery SOC is extremely important for lithium battery applications.

An example is automotive applications such as hybrid electric vehicles (HEV) [41]. In or-

der to sufficiently manage the energy used in the HEV and improve fuel efficiency, knowl-

edge of battery SOC is critical in the automotive control system. The battery needs to

be able to provide available charging and discharging power to meet the vehicle power

requirements.

It is difficult to directly measure SOC without precise laboratory equipment; therefore,

various techniques have been developed for SOC estimation. A number of these tech-

niques were discussed in the Introduction, and can be broadly categorized as model-based

or model-independent. The two categories are discussed in some more detail in the next

two sections.

2.2 Model-Based Battery SOC Estimation

As mentioned in the earlier chapter, model-based battery SOC estimation is commonly

used in control systems. The advantage of this method is that the final result can be fairly

accurate; however, this method is battery-specific and could even be specific to the type of

cathode chemistry. Two types of modeling approaches are often used: the electrochemical

model and the equivalent circuit model.

The electrochemical model tends to be more accurate compared to the equivalent circuit

model. It takes into consideration the chemical reactions and cell degradation phenomena.
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However, without precise laboratory equipment, it is difficult to create an electrochemical

model of a battery. This electrochemical model is more complicated and is computationally

intensive to execute than the equivalent circuit model.

An example of a Li-ion electrochemical model is given in Fig.2.3 [4]. In this paper,

the authors develop a 1D electrochemical cell model coupled with a solid diffusion model.

Using this model, chemical properties such as Li+ concentration in solid and electrolyte

phases, kinetic and transport properties, etc. can be captured or parameterized. In the

work done by [29] and [4], the authors have validated their model by confirming that the

open-circuit voltage predicted by the model matched with hardware measurement.

Figure 2.3: Electrochemical Model of a Lithium ion Battery [4]

Fig.2.4 shows an example of the equivalent circuit model. The equivalent circuit model

consists of the charge transfer resistance and double layer capacitance. Utilizing this resis-

tance and capacitance, the battery’s first order dynamic behavior can be estimated. It can

be noted that the SOC estimation is concluded by estimating the OCV. Other equivalent

circuit models from the literature also incorporate the diffusion resistance and capacitance

into the equivalent circuit. Fig.2.4 shows that the voltage response of the system can be
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Figure 2.4: Simple Battery Equivalent Circuit Model of a Lithium ion Battery [5]

estimated as the following [5]:

V = Voc + IRΩ + Vdl (2.4)

where Vdl can be calculated using:

dVdl

dt
+

Vdl

CdlRct

=
1

Cdl

(2.5)

From the modeling approaches that have been followed by several research groups as out-

lined above, it is observed that models are used to predict the OCV, which is in turn used to

measure SOC. However, without using an actual OCV, additional algorithms such as EKF

are needed to obtain an accurate SOC result.

2.3 SOC Estimation based on Direct OCV Measurement

Instead of using a modeled-based OCV approach, the SOC can be estimated from a direct

measurement of the OCV. If OCV is directly measured then the SOC can be determined

from an OCV vs. SOC map of the battery. This approach is simple and inexpensive. Also,

using the direct measurement method, modeling is not necessary. However, the true OCV
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is only obtained if the battery is switched off (i.e, relaxed) for an infinite duration of time.

If the switch-off time is finite, then one measures an approximate OCV and hence incurs

errors in the resulting SOC data. Thus, the direct OCV measurement method could be used

when voltage relaxation time is allowed.

Directly measuring the OCV to estimate SOC has been attempted for lead acid batteries

[53]. The authors discovered that the OCV is affected by the resting time and previous

discharged current. Their results show that the estimation error is less than 5% if a resting

time greater than 10 minutes is allowed. This is a significant switch-off duration. For

Li-ion batteries, experiments show a faster recovery time to its OCV compared to lead-

acid batteries [31]. Because of this faster recovery time, the necessary switch-off duration

for obtaining a relatively accurate estimate of SOC can be shorter. Hence, this technique

could have wider applications for Li-ion batteries. In addition to the property of faster

recovery time, Li-ion batteries weigh less (higher power density) than lead acid batteries.

A lighter weight battery is advantageous for applications with weight constraints, such as

electric vehicle applications, [54]. On the other hand, for Li-ion batteries, the battery’s

OCV vs. SOC curve is quite flat (low slope) in the 20-80% SOC range. This may lead to

higher estimation error even with small errors in OCV measurement. Another disadvantage

of direct OCV measurement is that OCV varies with temperature since the capacity of a

Lithium cell varies with temperature.

The next few chapters discuss the experiments that were conducted to investigate the

direct OCV measurement method for Li-ion batteries and present experimental data to show

the effectiveness of this method in estimating SOC.
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Chapter 3

Experimental Setup and SOC vs. OCV

Characterization

3.1 Experimental Setup

Figure 3.1 [6] shows a snapshot of the LiFePO4 18650 single cell battery. It is subject to

a pulsed current profile using an Arbin BT-2000 battery testing equipment at a constant

temperature of 25◦C. The equipment was made available for use for this research by Dr.

Brian Landi of the Chemical Engineering department at RIT. The Li-ion cell is charged at

a constant current of 1.5A until 3.6V and then held at 3.6V for 45 minutes. The cell is then

discharged at 1.1A (i.e, 1C rate). This charging set up follows the recommendations of the

data-sheet [6] provided by the manufacturer.

For the LiFeMgPO4 chemistry, a 12V battery module purchased from Valence, Inc. as

shown in Fig. 3.2, is used.

Fig. 3.3 depicts a schematic diagram of the experimental setup for testing the battery

module. The setup consists of the following equipment:

• A DC 100V/50A programmable power supply from Elgar electronics,

• A dSpacer DS1103PPC controller board,

• Current clampers (sensors) from Fluke,
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Figure 3.1: A123 Battery, Figure Courtesy [6]

Negative Terminal 

Positive Terminal

U-BMS Comunication

 Cable 

Jumper

Figure 3.2: Valence, Inc. LiFeMgPO4 12V Battery Module, [7]

• A DC programmable electronic load from Elgar electronics,

• A voltage divider made from precision resistances for voltage measurement.

• A rated 30A DC relay shown in Fig. 3.5, [8], is used for switching the battery on and

off from the circuit.

Fig. 3.4 shows the hardware setup. The dSpace 1103 is a controller board for executing
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Figure 3.3: Schematic of Battery Module Experiment Setup

real-time simulations. The board has a number of digital-to-analog and analog-to-digital

channels for data acquisition, command and actuation. The dSpace controller board and the

associated software called ControlDeskr also allow online real-time monitoring. For this

work, Matlabr /Simulinkr is used for programming the necessary logic, data processing

and commands. Utilizing dSpace, Matlabr/Simulinkr code is translated into hardware

code and executed in real time.

3.2 Lead Acid Battery vs. Lithium Ion Battery

As mentioned earlier, Li-ion batteries have many advantages over other types of batteries.

One such advantage is a faster voltage recovery upon switch-off. This implies that for at

least some chemistries of Li-ion batteries, upon switch-off the terminal battery voltage ap-

proaches the OCV faster than conventional batteries such as lead-acid. In order to compare

the recovery times, simple charge and discharge comparison tests are run for a lead acid

battery, shown in Fig. 3.6, and a lithium ion battery. Both batteries are 12V modules.

A 5A charging/discharge current is applied to the system for the tests. Overall, the test
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Figure 3.4: Experimental Test Stand Setup

consists of a repeating sequence of pulses with five-minute open-circuit and two-minute

charge/discharge.

An NP65-12BFR lead-acid battery module from Energies Inc. is used for this test. For

the Li-ion battery, the module shown in Fig. 3.2 is used. The terminal voltage is measured

and the comparison results are shown in Fig. 3.7 and Fig. 3.8. It can be seen that during

the open-circuit time, the recovery time of the terminal voltage for the lithium ion battery

is less than that for the lead acid battery, especially during the charging test. Having a

faster recovery time to the open-circuit voltage is advantageous since it is undesirable to

switch the battery off from the system for an extended period of time for sensing/estimation

purposes.
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Figure 3.5: 12 VDC Coil 30A Relay, Figure Courtesy [8]

Figure 3.6: NP65-12BFR Lead-acid Battery Module from Energies, Inc

Because of the faster recovery time, Li-ion batteries are more suitable to utilize the

open-circuit voltage method compared to lead acid batteries. The following sections inves-

tigate the SOC estimation approach through switching and OCV measurement.

3.3 SOC vs. OCV Characteristics

This thesis uses a switching-based method for SOC estimation. The method works by

providing a switch-off interval during which the terminal voltage is measured. The mea-

surement at the end of this interval provides an estimate of the OCV. Subsequently, the
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(a) Lead Acid Charging Test Results
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(b) Lithium Ion Battery Charging Test Results
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Figure 3.7: Lithium Ion and Lead Acid 5A Charging Data Comparison. (a) Lead Acid
battery, (b) Lithium Ion Battery

battery’s characteristic OCV vs. SOC plot is used to estimate the SOC. The goal is to un-

derstand the accuracy of this method, which is proposed to require a comprehensive battery

model. If an error-bound is determined, this method can be incorporated into a robust con-

trol system that handles this error and delivers the control objectives of the system in the

presence of this error.

In order to use the direct OCV measurement method to estimate SOC, as mentioned

above, an OCV vs. SOC curve is needed. The OCV vs. SOC curve can be generated by

fully charging the battery and cycling the battery over time.

3.3.1 SOC vs. OCV Curve of LiFeMgPO4 Battery Module

In the preliminary testing of the Valence Technology’s U24-12RT Li-ion battery, shown in

Fig. 3.2, a diagnostic tool-kit that provides SOC data is used. The tool-kit is shown in Fig.

3.9. The tool-kit can provide SOC data of the battery at any time by using the coulomb

counting method in conjunction with a precise model, according to the manufacturer’s data

[55]. The tool-kit shows consistency when measuring the SOC, which further confirms the

accuracy of their monitoring kit. The monitoring tool-kit is used to generate the OCV vs.
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(a) Lead Acid Battery Discharging Test Results
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(b) Lithium Ion Battery Discharging Test Results
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Figure 3.8: Lithium Ion and Lead Acid 5A Discharging Data Comparison. (a) Lead Acid
Battery, (b) Lithium Ion Battery

SOC curve of this battery module.

Figure 3.9: Diagnostics Tool-Kit for SOC Measurements of the Valence Lithium-ion Bat-
tery [7].

In order to determine the required resting time for accurate SOC estimation, the battery

needs to be in quasi-equilibrium status. Preliminary testing is required to determine the

quasi-equilibrium point. Fig. 3.10 shows two cycles of the initial test. It can be seen from

Fig. 3.10 (a) and (b) that within the first 100 seconds, the voltage slowly converges to an

equilibrium. It is safe to assume that after five minutes of switch-off time, the open-circuit

voltage reading has minimal change from observation.
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Figure 3.10: (a)20A Discharging Plot,(b)20A Charging Plot

From Fig. 3.10, it is noted that the transient time of charging the battery is longer

than discharging the battery. The charging and discharging measurements of the SOC have

variations depending on how long the wait time is. As predicted, the longer the rest time,

the more accurate the SOC result.

The OCV vs. SOC curve generated for this battery is shown in Fig. 3.11. The plot

is generated by charging the battery from 0% SOC to 100% SOC and discharging from

100% to 0%. This test uses 20A current for charging and discharging the battery. During

the charging or discharge, the SOC as displayed by the battery management system is

monitored. At approximately 1% intervals of SOC, the battery is switched off and the

open-circuit voltage is recorded after five minutes of switch-off time. This experiment uses

the tool-kit shown in Fig. 3.9 to record the SOC provided by the in-built battery monitoring

system.

It is noted that slopes of the curve between 10% and 95% SOC are flatter than above

95% or below 10%. Also, note that with the proposed switching approach, the error of SOC

estimation would be lower as the slope of the OCV vs. SOC curve increases. Therefore,

the open-circuit voltage method is more accurate when the SOC is below 10% or above

95%. This behavior has been observed by [56], where the authors stated that there is a
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Figure 3.11: VOC vs. SOC of Lithium iron Magnesium Phosphate Battery Module

limitation of the usefulness of the mid-SOC range because of its small slope. Nevertheless,

as mentioned in the earlier section, the state of charge estimation is important for battery

protection and safety concerns. A SOC measurement is used for preventing a battery from

being overcharged or overdischarged. Moreover, the SOC of the battery would typically lie

in the mid-SOC range for a majority of the battery’s operating time. Hence, it is important

to investigate the accuracy with which the SOC can be estimated, even when in the mid-

SOC range.

3.3.2 SOC vs. OCV Curve of LiFePO4 Single Cell Battery

When generating the OCV vs. SOC curve during the preliminary testing of the LiFePO4

single cell battery, the battery is charged at a constant current of 1.5A until 3.6V is reached,

and then held at 3.6V for 45 minutes. The cell is then discharged at 1.1A or 1C rate.

The charge data and total capacity is provided by the Arbin BT-2000 cycler. The SOC is
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determined by using Equation (2.2). The OCV vs. SOC curve of the single cell battery is

shown in Fig. 3.12.
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Figure 3.12: VOC vs. SOC of Lithium iron Phosphate Single Cell Battery

Compared to the 12V battery module whose OCV vs. SOC curve is shown in Fig. 3.11,

it can be seen that the single cell battery has similar behavior for the OCV. The slopes of

the curve between 10% and 90% SOC are flatter than above 90% or below 10%.

3.3.3 Battery Hysteresis Effect

Both LiFePO4 and LiFeMgPO4 OCV vs. SOC plots show a difference between charging

and discharging cycles. There is roughly a 200mV difference for the battery module, and

20mV difference for the single cell battery between the charging and discharging plots.

This behavior has also been observed in [47] and [9]. It is referred to in the literature as the

hysteresis effect, and a detailed explanation is given in [9].

In [9], the authors explain that the charging electrode particles carry higher voltages
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than discharging electrode particles, so the hysteresis between charged and discharged volt-

age does not disappear as the charging/discharging current vanishes. The occurrence of this

behavior is because the time constant related to the charge transfer between charging and

discharging batteries is different. The chemical reaction time of the battery cell varies be-

tween charging and discharging. There are delays between the battery potential and its

chemical reaction. Energy is lost during the charge/discharge cycle because of hysteresis

effects. Fig. 3.13 from [9] illustrates the hysteresis effects of a LiFePO4 battery experi-

mental data.

Figure 3.13: Equilibrium Behavior of LiFePO4 Battery [9]

An explanation for this hysteresis phenomenon is related to heat dissipation. During the

charge/discharge process, most systems show a positive heat value within a limited compo-

sitional range, resulting in a plateau-shaped potential profile. As the temperature rises, the

chemical conversion process rate increases, resulting in a change in voltage potential. This

clarifies why the hysteresis decreases as the rate of charging and discharging decreases.

Using the knowledge of the battery’s hysteresis property and the OCV versus SOC

curve from a constant operational temperature, the next step of this research is to investigate

the accuracy of the direct open-circuit voltage measurement between different switch-off

times.
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As the battery switch-off time is increased, the estimation error is expected to decrease.

Investigating the relationship between the switch-off time and amount of estimation error

is the goal for the next section. The charging, discharging and nominal OCV versus SOC

curve are applied for initial simulation for SOC estimation.
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Chapter 4

Switching-Based SOC Estimation

4.1 Application to LiFeMgPO4 Battery Module

The battery characterization test uses DSpace and Matlabr to analyze data. This experi-

ment uses the SOC monitoring software available within the battery management system

to verify the SOC estimated through switching. It is assumed that the SOC data provided

by the software is more accurate than the estimate that will be obtained from direct OCV

measurement in conjunction with the OCV vs. SOC curve of the module given in Fig. 3.11.

From the data gathered from Fig. 3.11, two curves are applied to the charging and discharg-

ing tests. Fig. 4.1 shows the charging test: a 20A current is applied to the battery module,

and it is charged for two minutes. Thereafter, the circuit is opened for five minutes. This

sequence is repeated from 0% SOC to 100% SOC. A third-order Butterworth filter is used

to filter noise in the voltage measurement. Fig. 4.2(a) shows a section of resulting SOC

estimate generated after applying the terminal voltage data to the OCV vs. SOC charging

curve. Fig. 4.2 (b) instead presents the SOC estimates generated from the nominal OCV

vs. SOC curve from Fig. 3.11. The two plots are given to show the difference between

the battery management system-generated SOC and the switching-based SOC estimates

obtained using first the charging OCV vs. SOC plot and then the nominal (average) OCV

vs. SOC plot. It must be noted that in these plots, the relevant SOC data corresponds to the

intervals when the battery is switched off (i.e, when the battery current is zero).

Fig. 4.3 and Fig. 4.4 display results from the discharge test. The battery is discharged
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Figure 4.1: 20A Charging Test
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Figure 4.2: SOC Comparison (a)SOC Data Obtained from Charging OCV vs. SOC Curve,
Fig. 3.11 (b) SOC Data Obtained from Nominal OCV vs. SOC Curve, Fig. 3.11

for two minutes and switched off (i.e, open-circuit) for five minutes. This sequence is

repeated several times. The plot in Fig. 4.4(a) uses the discharging OCV vs. SOC curve of

Fig. 3.11 for estimating the SOC and Fig. 4.4(b) uses the nominal OCV vs. SOC curve of

Fig. 3.11.

From the results shown in Fig. 4.2 and Fig. 4.4, we next determine an estimate of the

magnitude of error observed after a 30 second switch-off time. Zoomed-in views into the

20A charging and discharging plots of Figs. 4.2 and 4.4, are shown in Fig. 4.5.
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Figure 4.3: 20A Discharging Test
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Figure 4.4: SOC Comparison (a)SOC Data Obtained from Discharging OCV vs. SOC
Curve, Fig. 3.11 (b) SOC Data Obtained from Nominal OCV vs. SOC Curve, Fig. 3.11

Both charging and discharging results indicate the maximum SOC estimation error due

to a 30 second switch-off time is within 15% if the proper OCV vs. SOC curve is applied.

The transient time for charging the battery is longer than discharging the battery. From the

test results, it shows that for the highest rated charge/discharge current (20A in this case),

when the SOC is around 50%, the error is within approximately a 15% boundary.

In order to verify the assumption that higher charging and discharging current causes

higher error, Figs. 4.6 and 4.7 present 5A charging/discharging tests with the same testing
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Figure 4.5: (a)Zoomed in 20A Charging Plot Using the VOC vs. SOC Charging Curve,
(b)Zoomed in 20A Discharging Plot Using the VOC vs. SOC Discharging Curve.

time period (five minutes open-circuit time and two minutes charging or discharging time).

The 5A charging and discharging tests follow the same pattern as the 20A results. For

charging tests, plotting against the charging OCV vs. SOC curve has a better fit than

plotting against the nominal curve. For discharging tests, the discharging OCV vs. SOC

curve has a better fit than the nominal curve. Comparing the 5A and 20A results, the 5A

results have errors less than 10% for the charging test and less than 5% for the discharging

test. As observed for the 20A case, the transient of the terminal voltage is slower during the

charging cycles than the discharge cycles. A general observation is that the time it takes for

the terminal voltage to reach equilibrium is longer for a battery that was previously charged

than discharged.

The method mentioned above with our battery can be incorporated in control applica-

tions, such as distributed energy systems, which can be robust to a 15% error in battery SOC

estimate. It is important to stress that when the SOC goes below 10% and above 90%, the

SOC estimation error would drastically decrease due to the sharp slopes in OCV vs. SOC

curve. Prevention of overcharging and over-discharging of the battery can be achieved rel-

atively easily as the sharp changes in the OCV would be more readily observable than in

the mid-region of the OCV vs. SOC curves.
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Figure 4.6: 5A Charging SOC Data from Charging Curve
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Figure 4.7: 5A Discharging SOC Data from Discharging Curve

4.2 Application to A123 LiFePO4 Cell

A test of two minutes open-circuit voltage and five minutes of charging from 0% to 100%

and discharging from 100% to 0% is performed for the single cell battery. Based on the

recommendation from the battery datasheet, the charging current and discharging currents

for this test are 1.5A and 1A, respectively. Fig. 4.8 shows one cycle of the battery charging

and discharging test. Over 500 cycles are performed to confirm repeatability for the SOC
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estimation method in this thesis. The single cell battery’s energy density is lower than that

of the battery module. The time it takes to fully charge and discharge the battery is much

shorter compared to the battery module tested in the previous section.

3.35 3.355 3.36 3.365 3.37 3.375 3.38 3.385 3.39 3.395

x 10
5

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

B
a

tt
e

ry
 v

o
lt

a
g

e
(V

)

time (sec)
3.3 3.305 3.31 3.315 3.32 3.325 3.33 3.335 3.34 3.345

x 10
5

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

B
a

tt
e

ry
 v

o
lt

a
g

e
(V

)

time (sec)

(a) Charging (b) Discharging

Figure 4.8: A123 LiFePO4 Battery (a) Charging and (b) Discharging Test

The SOC estimation results are shown in Fig. 4.9 and Fig. 4.10. Note that the actual

SOC plot (in red) must be compared to the estimated SOC (in blue) only during switch-off

duration. The switch-off durations can be seen as the durations when the estimated SOC

approaches close to the true SOC. It can be seen that the discharging plot has a lower error

value for the same time frame. At the end of two minutes, when the battery is charging,

the maximum estimation error is roughly 10%. When the battery is discharging, the error

is minimal; this indicates that the battery is reaching its equilibrium point much faster after

discharging than after charging. Fig. 4.11 illustrates the zoomed-in plot of Fig. 4.10. There

is approximately a 2 % error at the end of the two minutes of battery switch-off time. The

average error of estimation is approximately at 2 %. The results shown in this section are

similar to those of the 12V battery module tests. The direct OCV measurement method

has less error during discharging than charging. It is apparent that if the battery’s operating

mode (i.e, charging or discharging) immediately prior to a switch-off is known, then one

can predict if the magnitude of error will be relatively larger or smaller.

The results for the repeatability test, which investigates the accuracy of switching-based

36



www.manaraa.com

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

Charging SOC estimation plotted against charging curve

S
O

C
(%

)

 

 
actual SOC

estimated SOC

Samples

Figure 4.9: A123 Battery Charging SOC Data from Charging Curve
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Figure 4.10: A123 Battery Discharging SOC Data from Discharging Curve

SOC estimation over a period of hundreds of cycles, can be seen in Fig. 4.12. Here, the

transients are plotted at the 20th discharge cycle and 441st discharge cycle. There is a

slight difference between cycle 20 and cycle 441; it is less than 1% error difference. Thus,

it gives an indication that for the Li-ion chemistry considered, the effect of aging on the

switching-based SOC estimation method is potentially minimal and is almost negligible

for a range of about 500 cycles.
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Figure 4.11: Zoomed in A123 Battery Discharging SOC Data from Discharging Curve
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Figure 4.12: A123 Battery Fresh and Aged Battery Comparison
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Chapter 5

SOC Estimation using Battery Transient

Characteristics

5.1 Time Constant from Battery Transient Response

The data of Chapter 4 shows estimation error of OCV measurement as around 15% for

a battery module and 10% for a single cell battery given a two minute switch-off time.

While practically usable, an error of up to 15% is highly undesirable, and as such should

be minimized. To that end, characteristics of the instantaneous state of charge curve can be

identified to aid in both accuracy and convergence time of OCV-based SOC measurement.

Examining the SOC curve of Fig. 5.1, observations are noted of some characteristics re-

garding the transient behavior of the curve as the device under test is disconnected. First,

the transient voltage recovery of the battery during switch-off is composed of two different

components. An initial fast response with almost instantaneous jump in voltage is followed

by a second exponential transient with a larger time constant. Measurements taken after the

fast transient and identifying the time constant of the second transient response, resulted

in a better agreement of the estimated SOC with actual value. Convergence time is thus

lowered by identifying the underlying behavior of the slow transient from a short series of

measurements. Accuracy may be improved by evaluating the slow transient for a larger

monitoring time, providing a better estimate of the time constant, [57].
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A first-order model is assumed for the slow transient and accordingly Equation 5.1 is

used to calculate the time constant from the terminal voltage data.

V (t) = Vie
−t
τ + Vf (1− e

−t
τ ) (5.1)

In the equation above, Vi is the initial voltage at the beginning of the slow transient, V (t)

is the voltage at any interval t during the transient after Vi, Vf is the steady-state voltage

(OCV), and τ is the time-constant. Calculation of Vf is completed by rearranging Equation

(5.1) which yields

Vf =
V (t)− Vie

−t
τ

1− e
−t
τ

(5.2)

To calculate the time constant, the terminal voltages at two separate instants of time are

used in conjunction with Equation 5.2. Let the two instants be denoted by t1 and t2 where

the terminal voltages are V (t1) and V (t2). Then since the steady-state voltage Vf is same

for one transient response, i.e, for both instants t1 and t2, from Equation 5.2,

V (t1)− Vie
−t1

τ

1− e
−t1

τ

=
V (t2)− Vie

−t2
τ

1− e
−t2

τ

(5.3)
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The above equation is solved to determine the value of the time constant τ of the slow

transient during switch-off period.

5.1.1 Time Constant of the LiFeMgPO4 Battery Module

The switch-off and terminal voltage measurements for time constant calculation are set up

with a two minute switch-off time interval and a five minute charge/discharge time interval

with continuous measurement from 0% SOC to 100% SOC. Although there is an effect of

sensor noise, a continuous measurement spanning the entire 0% SOC to 100% SOC is done

to generate more reliable data rather than fragmented experiments conducted over several

sub-ranges of SOC.
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Figure 5.2: (a) Charging Time Constant, (b) Discharging Time Constant

Fig. 5.2 shows that the time constant stays relatively uniform during both charging

and discharging tests. The time constant during charging is slightly larger compared to

the discharging test. Chapter 3 shows that the transients in discharging cycle have a faster

recovery time than those in charging cycles, and Fig. 5.2 confirms this observation. The

hysteresis effect, discussed in Section 3.3.3, impacts the time constant between charging

and discharging. Note also that the data of Fig. 5.2 confirms there is no significant variation

of the time constant over the 0% SOC to 100% SOC range in both charging as well as

41



www.manaraa.com

discharging cycles. A single τ can be chosen to simplify the SOC estimation and minimize

the OCV estimation error.

5.1.2 Time Constant of the LiFePO4 Single Cell Battery

The same experimental system with an Arbin BT-2000 is used to calculate the time constant

for the slow transient of the LiFePO4 single cell battery. The switch-off time is a two

minute interval followed by a charge/discharge time interval of five minutes. Equation

(5.1) is used to calculate the time constant. The process is essentially the same as that of

the battery module time constant calculation. The results are shown in Fig. 5.3. The results

are plotted against cycle numbers to study variations associated with aging of the battery.

For the charging test, there appears to be an increase in time constant as the SOC increases.

For the discharging test, there is also a general trend of increasing of time constant as the

SOC increases. The increase in time constant over the entire SOC domain is around 7

seconds. However, from the cycles, it can be observed that during discharge at lower SOC

values, the time constant can vary up to 10 seconds. This can be an indication of battery’s

health, which is investigated further in this chapter.
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Figure 5.3: Single Cell Battery Time Constant Calculation (a) Charging Time Constant, (b)
Discharging Time Constant.

As before, a single τ value will be used rather than a variable quantity to simplify the
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resulting SOC estimation method. The next section shows the improved SOC estimation

results for both the battery module and the single cell battery.

5.2 SOC Estimation using Switch-off combined with Time

Constant

A single time constant is used to keep the estimation method simple instead of using a

different time constant for each SOC. Taking the average of the time constant calculated in

Section 5.1, the results in Fig. 5.4 , Fig. 5.5 , Fig. 5.6 and Fig. 5.7 are generated with 30

seconds switch-off time. The plots illustrate the contrast between the estimated SOC and

the actual SOC obtained from the software of the battery management system. The average

time constant of charging and discharging for the LiFeMgPO4 battery is 35 seconds and 18

seconds, respectively. The average time constant for the single cell LiFePO4 battery is 32

seconds and 33 seconds for charging and discharging, respectively. The summary of the

result is shown in Table 5.1. The maximum error of the LiFeMgPO4 is over 10% and over

5% for the LiFePO4 battery. In order to reduce this error, an optimal value τ is chosen as the

value to minimize the RMS deviation of the predicted SOC from the actual SOC. Equation

(5.4) is used to calculate the RMS error. Root mean square deviation (RMSD) is commonly

used to measure the differences between predicted values and the actual observed values.

|e| =
√∑N

i=1 e2
i

N
(5.4)

Fig. 5.8 displays the resulting RMSD for charging and discharging cycles for the 12V

LiFeMgPO4 battery module. The comparison uses the data from the cycling time of two

minutes open-circuit voltage and five minutes charging and discharging time. Minimal

errors are obtained at 44 seconds during the charging test and 28 seconds during the dis-

charging test. Thus, the single time constant is chosen to be 44 seconds and 28 seconds

when the battery is charging and discharging, respectively. The time constants are in the
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Figure 5.4: 30 Second Switch-off Time for SOC Estimation When Battery is Discharging
with Average Time Constant of 18 Second

Table 5.1: Battery SOC Estimation Result

Battery Test Max Error
(%)

Min Error
(%)

Mean Error
(%)

Switch-off
time (sec)

Battery Module Charging (τ=35) 10.34 0.02 3.64 30
Battery Module Discharging (τ=18) 12.21 0.03 3.96 30
Single Cell Charging (τ=32) 3.66 0.03 1.57 30
Single Cell Discharging (τ=33) 5.31 1.29 3.31 30

range of the individually calculated time constants shown in Fig. 5.2. Fig. 5.9, Fig. 5.10,

Fig. 5.11, and Fig. 5.12 are generated using the chosen time constant of 44 seconds and

28 seconds. To compare, switch-off times of 30 second and 60 second are used. The plots

illustrate the contrast between the estimated SOC and the actual SOC obtained from the

software of the battery management system. Fig. 5.9 and Fig. 5.10 are the charging and

discharging SOC plot of a 60 second switch-off time. Fig. 5.11 and Fig. 5.12 are the plots

of a 30 second switch-off time.

The SOC estimation errors are summarized in Table 5.2. Both charging and discharging

tests show minimal improvement by waiting an additional 30 seconds. Using the time

constant to estimate SOC can reduce the estimation error from the original 15% down to

44



www.manaraa.com

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

sample

E
st

im
at

e 
S

O
C

(%
)

 

 

Software SOC
Estimate SOC
avg cell temp

Figure 5.5: 30 Second Switch-off Time for SOC Estimation When Battery is Charging with
Average Time Constant of 35 Second

Table 5.2: Battery Module SOC Estimation Result

Battery Module Test Max Error
(%)

Min Error
(%)

Mean Error
(%)

RMSD Switch-off
time (sec)

Charging (τ=44) 8.67 0.03 3.34 4.07 30
Discharging (τ=28) 9.88 0.08 3.22 3.86 30
Charging (τ=44) 8.66 0.07 3.26 3.87 60
Discharging (τ=28) 9.34 0.14 3.04 3.68 60

4% and it is apparent that a reasonable estimate of the SOC can be obtained with a 30

second switch-off time.

Improved SOC estimation for the single cell LiFePO4 battery through the use of the

time-constant is verified utilizing the same estimation procedure as the battery module. The

time constant is chosen at the optimal point where RMSD is minimal. Fig.5.13 displays

the resulting RMSD for the single cell battery. The optimal time constant for discharging

is at 25 seconds while charging is 64 seconds. Fig. 5.14, Fig. 5.15 and Table 5.3 show the

actual SOC and estimated SOC curve by using the chosen time constant.

The single cell battery also shows improvement in SOC estimation, especially in the

charging test, compared to the original experiment. During the charging test, the SOC
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Figure 5.6: Single Cell Battery SOC Estimation: 30 Second Switch-off Time, Discharging
Test with Average Time Constant of 33 Second

Table 5.3: Single Cell SOC Estimation Result

Single Cell Test Max Error
(%)

Min Error
(%)

Mean Error
(%)

RMSD Switch-off
time (sec)

Charging (τ=64) 2.56 0.37 1.37 1.40 30
Discharging (τ=25) 5.25 0.49 2.42 1.92 30
Charging (τ=64) 3.60 0.03 2.08 2.02 60
Discharging (τ=25) 5.27 0.16 2.13 2.96 60

estimation error is reduced from a maximum error of 10% down to 3%. Although the

improvement is minimal for the discharging test, the estimation error is still under 5%.

This demonstrates that the switch-off method for estimating SOC can be improved upon

by augmenting a time-constant-based prediction of the OCV. This approach preserves the

original goal of minimizing the need of complicated mathematical models of the lithium

ion battery for SOC estimation.
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Figure 5.7: Single Cell Battery SOC Estimation: 30 Second Switch-off Time, Charging
Test with Average Time Constant of 32 Second

(a) (b)

Figure 5.8: Battery Module RMSD Results (a) RMSD for Charging Time Constant, (b)
RMSD Discharging Time Constant

5.3 Effect of Battery Aging on Time Constant

A drastic change in battery behavior such as its OCV recovery time may take place due to

aging. To understand this phenomenon better, a battery-life testing is conducted the same

way as in Section 5.1.2 for the single cell LiFePO4 battery. The single cell battery is cycled

over 500 times. The setup was used to monitor the variation in the time constant parameter
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Figure 5.9: 60 Second Switch-off Time for SOC Estimation When Battery is Charging,
with Ideal Time Constant

variation over cycles that emulate usage and aging. Earlier results showed that the battery’s

life cycle can have an effect on the time constant, based on the observation in Fig. 5.3.

During the discharging test, at the lower SOC, the time constant varies up to 13 seconds as

shown in Fig. 5.16. Between cycles in the 20s and the 200s, the time constant increases

about 10 seconds at 7% SOC and an overall increase of 5% on average. During the charging

test, Fig. 5.17 illustrates the cycles in the 20s and 200s. However, the variation does not

have a clear trend compared to the discharging test.

From the data shown in Fig. 5.16, time constants at low SOC (20%), mid SOC (50%)

and high SOC (90%) are isolated and their variation over cycles is plotted. Fig. 5.18

illustrates the time constant over different discharging cycles for 20, 50 and 90 % SOC.

The data shows that at higher SOC, the time constant is consistent over 500 cycles. At

lower SOC, the time constant actually decreases as the battery is cycled. Likewise, the

comparison of charging tests over different cycles is presented in Fig. 5.19. Regardless

of low, mid or high SOC, the overall time constant increases through the cycle life of the

battery. The hysteresis effect is most likely a cause of the difference between charging and
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Figure 5.10: 60 Second Switch-off Time for SOC Estimation When Battery is Discharging,
with Ideal Time Constant

discharging results.

Fig. 5.20 shows the comparison between cycle numbers 25 and 530 of the RMSD plot.

The time constant with minimum RMSD is at about 28 for both cycles. This indicates that

the chosen single time constant to estimate SOC may not change significantly over certain

range of cycles. The SOC estimation of cycle 530 is shown in Fig. 5.21 and 5.22. The plots

are generated by using the ideal time constant. The result is still accurate even with an aged

battery after 500 cycles. The calculated time constant may indicate the age of the battery.

However, further investigation is needed for a complete understanding of the relationship

between the battery’s age and the corresponding time constant of the slow transient of the

terminal voltage.
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Figure 5.11: 30 Second Switch-off Time for SOC Estimation When Battery is Charging,
with Ideal Time Constant
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Figure 5.12: 30 Second Switch-off Time for SOC Estimation When Battery is Discharging,
with Ideal Time Constant
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Figure 5.14: 30 Second Switch-off Time for SOC Estimation When Battery is Charging,
with Ideal Time Constant
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Figure 5.15: 30 Second Switch-off Time for SOC Estimation When Battery is Discharging,
with Ideal Time Constant
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Figure 5.16: Discharge Time Constant Comparison Between Cycles
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Figure 5.17: Charge Time Constant Comparison Between Cycles
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Figure 5.19: Charge Time Constant Over Cycles
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Figure 5.21: SOC Estimation When Battery is Charging at Cycle 530
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Figure 5.22: SOC Estimation When Battery is Discharging at Cycle 530
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Chapter 6

Conclusion

This thesis investigates a switching-based approach for SOC estimation for Li-ion batteries.

The concept behind the proposed estimation approach is to switch off the battery intermit-

tently and measure the terminal voltage during the switch-off durations. Such intermittent

switch-off intervals could be feasible in hybrid energy scenarios where multiple storage

elements are connected. Once switched off, the terminal voltage approaches the OCV. In

Li-ion batteries, this transient was found to be faster compared to conventional lead-acid

batteries. The fast transient is advantageous as it implies that a small switch-off duration

could provide a reasonably accurate measure of the OCV. This estimated OCV can then

be used to estimate the SOC with the help of an OCV vs. SOC mapping, which is a char-

acteristic property of a battery. The proposed OCV measurement approach can generate a

large error if the switch-off time is too short. Hence, the thesis experimentally probes the

trade-off between switch-off times and OCV measurement error. Whether the battery was

charging or discharging, application of the correct OCV vs. SOC curve can minimize the

SOC estimation error. The OCV vs. SOC curves were found to be slightly different during

charging and discharging cycles. The disparity is possibly due to the hysteresis effect of

the battery.

Even when applying the appropriate OCV vs. SOC curve, the error can be as large

as 15% for a 30 second waiting time - increasing beyond 15% as the switch-off time de-

creases. Next, it is observed that the transient response of the battery terminal voltage

during switch-off is composed of two transient effects. Initially, there is a sharp (almost
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instantaneous) recovery of the terminal voltage, of a high magnitude. This is followed by

a slower transient of lower magnitude. With this observation, we propose to approximate

the slower transient using a first-order behavior and estimate its time constant during the

switch-off interval. Utilizing a single time constant for charging and one for discharge, ob-

tained from experiments, the SOC estimation error is reduced to 5% over the entire range

of SOC, for a 30 second wait time. The single time constant methodology demonstrates

a more accurate SOC estimation without the need of precise laboratory equipment or an

extended switch-off time or a complicated and precise model of the battery. It was also

apparent that the age of the battery has minimal impact on the time constant used for SOC

estimation.

This thesis, however, discovered that the time constant changes over usage. Over 500

cycles, there is an approximately five second of time constant increase during charging

and five second decrease during discharging. As the battery is cycled, it is noted that the

time constant increases as the battery ages during charging tests. During discharge tests,

a clear trend of variation of the time constant was not observed. Further investigation is

required to determine the relationship between the battery’s age and the time constant for

the aforementioned slow transient of the terminal voltage of Li-ion batteries during switch-

off.

For both the single cell battery and the 12V battery module, the SOC estimation method

using a time constant shows promise of being applicable in control applications. As long as

the system allows the battery to switch off from the circuit for a short period of time, or is in

a parallel configuration, the switching-based SOC sensing technique could serve as a sim-

ple sensing/estimation approach, obviating the need for complicated model development.

The most immediate opportunity for future work is to utilize the SOC estimation method

in control applications; for example, in hybrid energy systems. The switching-based sens-

ing investigated in this thesis can be applied in fuel cell/battery hybrid energy systems.

Hybridizing the power source and battery together can optimize energy usage within the

system [54][58].
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Appendix A

Simulink and Control-Desk interfacing
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Figure A.1: The Overall Simulink Model of the Battery testing experiment

The Simulink setup for the battery testing is presented in Fig.A.1 is shown in A.1.

This setup is a modified version of the pre-existing simulink model provided by [7]. As

mentioned in Section 3.1, dSPACE is used for monitoring the hardware data. All the sensor
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inputs and control outputs shown in Fig.A.1 are interfaced through dSPACE. The dSPACE

monitoring GUI is shown in Fig.A.2

Figure A.2: Battery testing Setup Using Control-Desk Interface Software
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Appendix B

Matlab Code for Battery Testing

The following MATLAB code is used to set up the testing timing for the charging and

discharging experiment of the battery module. The MATLAB code is loading into DSPACE

for real time hardware testing.

V ocT ime = 300; chargingT ime = 120; dischargingT ime = 120; Acharge =

20; Adischarge = 20; s = 1; N = V ocT ime;

for k = 0 : 1 : 30

for i = s : 1 : N

TimeSOC(i) = i−m; StepSOC(i) = 0;

end

for i = N + 1 : 1 : (N + dischargingT ime) + 1

TimeSOC(i) = i−m− 1; StepSOC(i) = Adischarge;

end

for i = (N+dischargingT ime)+2 : 1 : (V ocT ime+dischargingT ime+N)+2

TimeSOC(i) = i− 2−m; StepSOC(i) = 0;

end

for i = (V ocT ime+dischargingT ime+N)+3 : 1 : (V ocT ime+dischargingT ime+

N + chargingT ime) + 3

TimeSOC(i) = i− 3−m;

StepSOC(i) = Acharge;

end
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s = (k + 1) ∗ (2 ∗ V ocT ime + dischargingT ime + chargingT ime + 3) + k + 1;

N = s + (k + 1) ∗ V ocT ime− k ∗ V ocT ime;

m = 3 ∗ (k + 1) + (k + 1);

end
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